
TARGETING SCALE-OUT AND SCALE-UP
PLATFORMS WITH A UNIFIED PARALLEL

PROGRAMMING MODEL

Nicolò Tonci
nicolo.tonci@phd.unipi.it

Agenda

2

§Context & State of the art
§FastFlow
§The distributed-memory RTS for FastFlow
§Launcher module
§Hands-on - Demo
§Future directions
§Q&A

Context

~41 billion devices in 2025

Big Data Analysis Trend

Need for new highly scalable applications and
programming interfaces for shared-memory
and distributed architectures.

Use cases:
• Smart cities
• Event forecasting
• Financial Analysis

3

State of the art

Single machine frameworks
(Shared-memory)

• Very efficient use of local
resources

• Can exploits hardware
acceleration

• No support for multiple
machines

• E.g., FastFlow,
Intel TBB, OpenMP

Distributed systems
frameworks

• Designed to handle
hundred of machines

• Very heavy frameworks
• Poor performance within
the single machine

• E.g., Apache Storm,
Apache Spark,
Apache Hadoop

4

FastFlow

• Advocates high-level, pattern-based parallel
programming.

• Mainly targets fine-grained and streaming
applications.

• Originally designed for shared-cache multi-core
• Skeleton-based parallel programming model
• Support for hardware accelerators

Node

SPSC lock-free queueSPSC lock-free queue

5

FastFlow cont’d

S1 S2 Sn

E

W1

C

Wn

…

WL2

WR1

WRn
…

WL1

WLn

…Pipeline

Farm

All-to-all

• Basic skeletons, a.k.a. building-blocks, can be
composed together to define complex data-flow
graphs

…

6

Programming model behind FastFlow
void Emitter () {
for (i=0; i<streamLen; ++i){

queue=SELECT_WORKER_QUEUE();
queue−>PUSH(create_task());

}
}

void Worker() {
while (!end_of_stream){

myqueue−>POP(&task);
do_work(task);

}
}

int main(){
spawn_thread(Emitter);
for (i=0; i<nworkers; ++i){

spawn_thread(Worker);
}
wait_end();

}

E

W0

C

Wn-1

…

Farm (functional replication) of n workers

7

From single to many multi-core machines

Need to
scale

• Modern applications require to scale to hundreds/thousands to cores

Extending
the FastFlow

RTS

• We need to extend the FastFlow run-time system to work outside the single
machine environment

Goals

• Small effort by the programmers
• Use the same programming model of the shared-memory applications
• Lightweight layer reusing the built-in building-blocks

9

WR1

WR2

WL1
S1

S2

LB

Data-flow Plane

Deployment Plane

WL3

WL2

10

Node

Communication wrappers

§ Applied to edge-nodes, i.e., those that communicate outside the process

§ Do not require to reimplement edge-nodes

§ Each edge-node can perform data serialization/deserialization in parallel.
Two mechanism of serialization are available: cereal based, and user defined.

§ Three types of wrappers
§ Wrapper OUT: performs data serialization and the encapsulation
§ Wrapper IN: performs the decapsulation and the data de-serialization
§ Wrapper IN/OUT: combination of Wrapper IN and Wrapper OUT for operators connected to

remote nodes either in input and output.

Wrapper OUT

Node

Wrapper IN

Node

Wrapper IN/OUT

Pointer to data Serialized Data Serialized Data Pointer to data Serialized Data Serialized Data

11

Communication nodes

§ Sender and receiver are the only nodes that actually communicate outside of the
process (gateways).

§ Lightweight routing protocol to during the initial handshake to perform message
routing

Receiver

Process #1

Receiver

Process #2
Sender

0

2

Process #0

4

1

3

0

1

2

0

1

A

B

12

𝛼

𝛽

Distributed-memory channel

Shared-memory channel

Wrapper OUT

Wrapper IN

Application Program Interface

S1 S2 S3

Group ”G1” Group ”G2”

#include <ff/ff.hpp>
#include <ff/dff.hpp>
...
int main(int argc, char*argv[]){

DFF_Init(argc, argv);

ff_pipeline pipe;
Node1 s1;
Node2 s2;
Node3 s3;

pipe.add_stage(&s1);
pipe.add_stage(&s2);
pipe.add_stage(&s3);

auto G1 = pipe.createGroup("G1");
auto G2 = pipe.createGroup("G2");
G1 << &s1 << &s2;
G2 << &s3;

pipe.run_and_wait_end();
return 0;

}

{
"groups" : [

{
"endpoint" : "host1:0",
"name" : "G1",

},
{
"name" : "G2",
"endpoint": "host2:8005",

}
]

}

host1:$./myapp --DFF_Config=config.json –-DFF_GName=G1

host2:$./myapp --DFF_Config=config.json –-DFF_GName=G2

myapp.cpp

config.json

laptop:$ dff_run –V –f config.json ./myapp

Alternatively
13

dff_run loader module

• Like the well-known mpirun command
• Takes in input the executable and the JSON

configuration file
• Forks the processes either locally and

remotely, with the right parameters

• Still as proof of concept.
• Mainly used to accelerate the launching

during troubleshooting and test execution.

14

Open problems and future directions

16

§Automatic graph split
§Bridging with Cloud/Big Data applications
§Collective communications (e.g., broadcasts, gathers
all)

§Add fault-tolerance features

TARGETING SCALE-OUT AND SCALE-UP PLATFORMS WITH A UNIFIED PARALLEL
PROGRAMMING MODEL

Nicolò Tonci
nicolo.tonci@phd.unipi.it

Thanks for the attention!

