UNIVERSITA
DI PIsSA

TARGETING SCALE-OUT AND SCALE-UP
PLATFORMS WITH A UNIFIED PARALLEL
PROGRAMMING MODEL

Nicolo Tonci
nicolo.tonci@phd.unipi.it

Agenda

= Context & State of the art

= FastFlow

= The distributed-memory RIS for FastFlow
= auncher module

s Hands-on - Demo

» Future directions
" Q&A

Context

~41 billion devices in 2025
Big Data Analysis Trend

Need for new highly scalable applications and
programming interfaces for shared-memory

and distributed architectures. :

Oé@

O
Use cases: ©0
« Smart cities
 Event forecasting
 Financial Analysis

State of the art

Single machine frameworks

(Shared-memory)

- Very efficient use of local
resources

- Can exploits hardware
acceleration

- No support for multiple

machines

- E.g., FastFlow,
Intel TBB, OpenMP

- E.g., Apache Storm,

Distributed systems

frameworks

- Designed to handle

hundred of machines

- Very heavy frameworks
- Poor performance within

the single machine

Apache Spark,
Apache Hadoop

FastFlow

« Advocates high-level, pattern-based parallel
programming.

« Mainly targets fine-grained and streaming
applications.

« Originally designed for shared-cache multi-core
« Skeleton-based parallel programming model
« Support for hardware accelerators

SPSC lock-free queue SPSC lock-free queue

Parallel Applications

)

Frameworks

Libraries
using
FastFlow
as RTS

High-Level Parallel Patterns

ff Farm, ff OFarm, ff_Pipe, ff_Pool,
ff DC, ff_mdf, ff_StencilReduce,
ff_taskf, ParallelFor, ParallelForReduce, ...

Y Y

arallel building block >C°"C""ency graph
pipeline, farm, all-to-all transformer
v rules, functions, ...
¥

equential building blocks
standard nodes, multi-input nodes,
multi-output nodes, sequential nodes combiner,
gathering policies, routing policies, wrappers,
FIFO channels, feedback modifier,

POSIX Threads/
TCP/IP /| ZeroMQ {C++ Threads, STL OpenCL / CUDA
RDMA libverbs TPC Library
GPUs & FPGAs multi/many-cores ‘ cow

FastFlow cont’d

All-to-all

« Basic skeletons, a.k.a. building-blocks, can be
composed together to define complex data-flow
graphs

6

Programming model behind FastFlow

Emitter () {
for (i=0; i<streamLen; ++i){
queue=SELECT_WORKER_QUEUE() ;
queue—>PUSH(create_task()); Farm (functional replication) of n workers

¥
¥

Worker() {
while ('end_of_stream){
myqueue—>POP (&task) ;
do_work(task); - C

¥
¥

main()A{
spawn_thread(Emitter);
for (i=0; i<nworkers; ++i){
spawn_thread(Worker) ;
s
wait_end();

}

From single to many multi-core machines

- Modern applications require to scale to hundreds/thousands to cores

- We need to extend the FastFlow run-time system to work outside the single

. machine environment
Extending

the FastFlow
RTS

- Small effort by the programmers
- Use the same programming model of the shared-memory applications
- Lightweight layer reusing the built-in building-blocks

Communication wrappers

= Applied to edge-nodes, /e, those that communicate outside the process
= Do not require to reimplement edge-nodes

= Each edge-node can perform data serialization/deserialization in parallel.
Two mechanism of serialization are available: cereal based, and user defined.

= Three types of wrappers
= Wrapper OUT: performs data serialization and the encapsulation
= Wrapper IN: performs the decapsulation and the data de-serialization
= Wrapper IN/OUT: combination of Wrapper IN and Wrapper OUT for operators connected to

remote nodes either in input and output.
Pointer to data Pointer to data Serialized Data

Wrapper OUT Wrapper IN Wrapper IN/OUT 11

Serialized Data
—_—

Serialized Data Serialized Data
—_—

Communication nodes

= Sender and receiver are the only nodes that actually communicate outside of the
process (gateways).

= Lightweight routing protocol to during the initial handshake to perform message

routing
© 9
O

Process #1

a
Q . Process #2

Wrapper OUT ﬁ

Process #0 S~
Wrapper IN Receiver
__________ » Distributed-memory channel

» Shared-memory channel

O®

12

Application Program Interface

Group "G1”

#include <ff/ff.hpp> myapp . cpp
#include <ff/dff.hpp>

main (argc, argv[]){
DFF_Init(argc, argv);

{ config.json

"groups" : [
{
"endpoint" : "hostl1l:0",
Ilnamell : IIGlII’

’

ff_pipeline pipe;
Nodel s1;
Node2 s2;
Node3 s3;

}
{

pipe.add_stage(&sl);
pipe.add_stage(&s2);
pipe.add_stage(&s3);

Ilnamell : IIGZII’
"endpoint": "host2:8005",

= pipe.createGroup("G1");
G2 = pipe.createGroup("G2");
Gl << &s1 << &s2;
G2 << &s3;
hostl:$./myapp ——DFF_Config=config.json —DFF_GName=G1
pipe.run_and_wait_end();

return 0; host2:$./myapp —-DFF_Config=config.json —DFF_GName=G2

Alternatively

laptop:$ dff_run =V —f config.json ./myapp

dff run loader module

Like the well-known mp/run command

Takes in input the executable and the JSON

configuration file

Forks the processes either locally and
remotely, with the right parameters

Still as proof of concept.

Mainly used to accelerate the launching
during troubleshooting and test execution.

node0

nodel

nodeX

[dff_run

| ssh/scp

GO0 node0

group G2

G1 nodel
group G1

GX nodeX

config.json FFapp

A

config.json FFapp

TCP/IP sockets

\MPI communica

—>aanem

A

GO node0
G1 nodel

CX no-dex

config.json FF app

/

14

Open problems and future directions

= Automatic graph split
=Bridging with Cloud/Big Data applications

= Collective communications (e.g., broadcasts, gathers
all)

» Add fault-tolerance features

16

UNIVERSITA
DI PIsSA

TARGETING SCALE-OUT AND SCALE-UP PLATFORMS WITH A UNIFIED PARALLEL
PROGRAMMING MODEL

Thanks for the attention!

Nicolo Tonci
nicolo.tonci@phd.unipi.it

